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SEQUENTIAL DECISION RULES FOR FAILURE DETECIION*

Edward Y. Chow, Schlumberger-Doll Research Acoession Fxo-
Ridgefield, Connecticut 06877 NTtSCRA&I

Alan S. Willsky, Laboratory for Information and Decision Systems, DTIC TAB
Massachusetts Institute of Technology Unannounced

Cambridge, Hassachusetts 02139 JUStificati0

Abstract
By

The formulation of the decision making of a failure detection Distrib tion/
process as a Bayes sequential decision problem (BSDP) provides ....-
a simple conceptualization of the decision rule design problem. Availabil Code
As the optimal Dayes rule is not computable, a methodology that . o
is based on the Baysian approach and aimed at a reduced. computa- Avail and/or
tional requirement is developed for designing suboptimal rules. DiSpe al
A numerical algorithm is constructed to facilitate the design and
performance evaluation of these suboptimal rules. The result of
applying this design methodology to an example shows that this

approach is a useful one.

* This work was supported in part by the Office of Naval Research under Contract
No. N00014-77-C-0224 and in part by NASA Ames Research Center under Grant NGL-22-009-124.

i. INTRODUCTION 2. THE 3AYESIAN APPROACR

The failure detection and identification (FDI) The BSDP formulation of the FDI problem consists
process involves monitoring the sensor measurements of six elements:
or processed measurements known as the residual [1] 1) 0: the set of states of nature or failure
for changes from its normal (no-fail) behavipr. Re- hypotheses. An element i of 0 may denote a single
sidual samples are observed in sequence. If a failure type i failure of size u occurring at time T(9-
is judged to have occurred and sufficient information (i,T,V)) or the occurrence of a set of failures (pos-
(from the residual) has been gathered, the monitoring sLbly simultaneously), i.e. e-((ilT 1 ,V1 ) . (in,rn,
process is stopped. Then, based on the past obser- Vn)}. Due to the infrequent nature of tailure, we
vations of residual, an identification of the failure will focus on the case of a single failure.
is made. If no failure has occurred, or if the ir.- In many applications it suffices to just identify
formation gathered is insufficient, monitoring is not the failure type without estimating the failure size.
interrupted so that further residual samples may be Noreover, it is often true that a detection system
observed. The decision to interrupt the residual- based on (i,r,u-) fItr some appropriate 7 can also de-
monitoring to make a failure identification is based tect and identify the type of the failure (i,f,) for
on a compromise between the speed and accuracy of the v>V. Thus, we may use (i,r,1) to represent (i,7).
detection, and the failure identification reflects In the aircraft sensor FD1 problem [3), for instance,
the design tradeoff among the errors in failure clas- excellent results were obtained using this approach.
sification. Such a decision mechanism belongs to the Now we have the discrete nature set
extensively studied class of sequential tests or se-
quential decision rules. In this paper, we will em- 3 - ((i,r), i-.,...,., t1,.
ploy the Bayesian Approach [2] to design decision
rules for FD1 systems. where we assume there are M different failure types

In Section 2, we will describe the Bayes formu- of interest.
lation of the FDI decision problem. Although the 2) v: the prior probability mass function (?MF)
optimal rule is generally not computable, the struc- over the nature set ). This PMF represents the a
ture of the Bayesian approach can be used to derive priori information concerning the failure, i.e. how
practical suboptimal rules. We will discuss the de- likely it is for each type of failure to occur, and
sign of suboptimal rules based on the Bayes formula- when is a failure likely to occur. Because tht, in-
cion in Section 3. In Section 4, we will report our formation may not be available or aczjrrate in soe
experience with this approach to designing decision cases, the need to specify - is a drawback of the
rules through a numerical example and simulation. Bayes approach for such eases. e.ertheless. -we will

see chat it can be regareJ a a paraneter in ch.! de-
sign of a Bayes rule.

In general, ma- i e a t rar.. ere. "e; ,r-
the underlyin; failurze :rDcess hi ,'o nroner:,;
i) the M failures of are ofdnent of o n,,hr,
and ii) tht occiLrrvnce . *zh :a l:r." i is
3,ernoulli process with ::t. ori-.n r

n or to I,: - :~ - I a
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describes a large class of failures (such as sensor that the residual is affected by the failure in a
failures) while providing a simple approximation for causal manner, its conditional density has the prop-
the others. It is straightforward to show that erty

where i-l,...,.M, .>k

M where (0.-) is used to denote the no-fail condition.
0=Ia (lo) For the design of suboptimal rules, we will assume

j-i that the residual is an independent Gaussian sequence
M - with V(mxm matrix) as the cime-Independent covariance

o(i -i(l-- o (1- ] -  function and gi(k-r) as the mean given that the fail-
J.l ure (iT) has occurred. With the covariance assumed

to be the same for all failures, the mean function
The parameter 0 may be regarded as the parameter of gl(k-z), characterizes the effect of the failure
the combined (Bernoulli) failure process - the oc- (1,T), and it is henceforth called the signature of
currence of the first failure; a(i)can be interpreted (i,T) (with sA(k-T)-O, for i=O, or T>k). We have
as the marginal probability that the first failure chosen to stu y this type of residuals because its
is of type i. Note that the present choice of u in- special structure facilitates the development of in-
dicates the arrival of the first failure is memory- sights into the design of decision rules. Moreover,
less. This property is useful in obtaining time- the Gaussian assumption is reasonable in many problems
invariant suboptimal decision rules, and has met with success in a wide variety of appli-

3) V(k): the discrete set of terminal actions cations, e.g., (3] (4]. (It should be noted that the
(failure identifications) available to the decision use of more general probability densities for the

• maker when the residual-monitoring is stopped at time residual will not add any conceptual difficulty.)
k. An element 6 of V(k)may denote the pair (j,t), 6) c(k,(i,,)): the delay cost function having
i.e. declaration of a type j failure to have occurred the properties:
at time t. Alternatively, 6 may represent an iden-
tification of the j-th failure type without regard c(i,k-:) > 0 t<k
for the failure time, or it may signify the presence c(k,(i,T)) - >

of a failure without specification of its type or 0 _~k

time, i.e. simply an alarm. Since the purpose of FDr
is to detect and identify failures that have occurred c(ik,-T)>c(i,k2 -T) kl>k 2 >C
V(k) should only contain identifications that either
specify failure times at/before k, or do not specify After a failure has occurred at T, there is a penalty
any failure time. As a result, the number of ter- for delaying the terminal decision until time k>T
minal decisions specifying failures times grows with with the penalty an increasing function of the delay
k while the number of decisions not specifying any (k-r). In the absence of a failure, no penalt% is
time will remain the same. In addition, D(k) does imposed on the sampling. In this study we will con-
not include the declaration of no failure, since the sider a delay cost function that is linear in the
residual-monitoring is stopped only when a failure delay, i.e. c(i,k-T)-c(i)(k-T), where c(i) is a posi-
appears to have occurred. tive function of the failure type i, and may be used

4) L(k;e,6): the terminal decision cost func- to provide different delay penalties for different
tion at time k. L(k;G,S) denotes the penalty for types of failures.
deciding 60(k) at tine k when the true state of A sequential decision rule naturally consists of
nature is I(i,r) It is assumed t be bounded and two parts: a stopping rule (or sampling plan) and a
non-negative and have the structure: terminal decision rule. The stopping rule, denoted

by €( (O),€(I;r(1)) .... (k~r(1),....r(k)),...) is a
(L((i,T),6) T<k, 60V(k) sequence of functions of the observed residual sam-

ples, with O(k;r(l),...,r(k))-1, or 0. When
IL. T>k 60(k) O(k;r(l),...,r(k))-l, (0), residual-monitoring or

sampling is stopped (continued) after the k residual
where L(e,d) is the underlying cost function that is samples, r(l),...,r(k) are observed. Alternatively,
indepndent of k; LF denotes the penalty for a false the stopping rule may be defined by another sequence
alar., and it may be generalized to be dependent on of functions '=($(O),L(l;r(1)).,(k;r(1),.
d. It is only meaningful for a terminal action r(k)),...), where i(k;r(l),...,r(k))=l (0) indicates
(identification) that indicates the correct failure that residual-monitoring has been carried-on up to
(and/or time) to receive a lower decision cost than and including time (k-1) and will (not) be stopped
one that indicates the wrong failure (and/or tine), after time k when residual samples, r(l),...,r(k) are:;e further assume that the penalty due to an incor- observed. The functions - and r are related to each

rect identification of the failure t1me is only de- other in the followin; ' ayj njenc on the -rror of such an identification. That
s .or ;[ (j,t), i(k;r() .. r(k)) =:(k.ir() .. r(k))•

k-I
i) ,f -(s,r1),. r(s))]

S =0U!.~,j,(r))

-nd .or with no t-7-c , -cification with (0)s:(O).
The :erminal Cec;,ion rule is a sequience of

L((i.2 )[) L(i,; functions, D(d(0).d(l:r(lfl. d(kr(l).
... ), rapping r. ;. al ;-'Ies, r(l),. r(k) into

5) r(k) : . -- d .nsionnI recidual (ohterva- the terrmin.al action set . The function
--.. co~ ;x '.,.t p'r(l),. .r(k) O'e) ~~rD rk) !-*t h 'C in rul I.2d

i ont c,; it onal ,n~itv. As-jr-,n' n0 arrive at . i ,n ion t i Lcn in) if s: :.
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is stopped at time k and the residual samples, r(l), relationships among the various performance issues.
.r(k) are observ;ed. The advantage of the indirect approach is that only
As a result of using the sequential decision the total expected cost instead of every individual

-ae ( g,D), given (i,r) is the true state of nature, performance issue needs to be considered explicitly in
the total expected cost is: designing a sequential rule. The drawback of the ap-

proach, however, lies in the choice of a set of appro-
U0 (i,T),(*,D)J- E i,T((k;r(1). r(k))[c(k,(i,r))+ priate cost functions (and sometimes the prior distri-

k-0 'bution) when the physical proble= does not have a nat-
L(k;(i,r),d(k()..r(k)))]} ural set, as it doesn't in general. In this case, the

Bayes approach is most useful with the cost functions
Te BSD? is defined as: determine a sequential deci- (and the prior distribution) considered as design
sion rule (t*,D*) so that the sequential Bayes risk parameters that may be adjusted to obtain an acceptable
us is minimized, where design.

The optimal terminal decision rule D* can be eas-
E ,ily shown to be a sequence of fixed-sample-size tests

) o] (ir)Uo[(iL
0

),(0D)J [2]. The determination of the optimal stopping rule
i-I t-l 0* is a dynamic programming problem (1]. The immense

(**,D*) is called the Bayes Sequential Decision Rule storage and computation required make t* impossible to
(3SDK) with respect to u, and it is optimal in the compute, and suboptimal rules ns be used.

sense that it minimizes the sequential Bayes risk. Despite the impractical nature of its solution,
rn the following we will discuss an incerpreta- the BSDP provides a useful cramevork for designing

tin of the sequential risk for the FDI problem. Let suboptimal decision rules for the FDI problem because
us ferine the following notation of its inherent characteristic of explicitly weighing

--I the tradeoffs between detection speed and accuracy (in

- 40 (k;r(),. r(k)) terms of the cost structure). A secuential decision
F - * '- rule defines a set of sequential decision regions

S(k,d), and the decision regions corresponding co theI .~ (k) BSDR yield the minimum risk. From this vantage point,9(k) the design of a suboptimal rule can be viewed as the
problem of choosing a set of decision regions that

k,S)[r(1)...,r(k)]: would yield a reasonably small risk. This is the es-
(k;rl) .... r(k)=ld(kr()....,r(k)) }, sence of the approach to suboptimal rule design that

we will describe next.

?rf(k, )li,t> f p(r(l),....r(k)li,T)dr(l)...dr(k)
S(k,) 3. SUBOPTL RULES

:i, - -!P )-1 The Sliding W.indow Approximation
ir The immense computation associated with the BSDR

is partly due to the increasing number of failure
,) Pr(S(k,)Ii,T}(1PF)-  hypotheses as time progresses. The remedy for this

"- F) problem is the use of a slidin; window to limit the
number of failure hypotheses to be considered at each

;here PF(:) is the probability of stopping to declare time. The assumption made under the sliding window
a failure before the failure occurs at r, i.e, the approximation is that essentially all failures can be
probability of false alarm when a failure occurs at detected within W time steps after they have occurred,
:ime r; D is the set of terminal actions for all times; or that if a failure is not detected within this time
5(k,3) is the region in the sample space of the first it will not be detected in the futurL. Here, the win-
k residuals where the sequential rule ( ,D) yields the dow size W is a design parameter, and it should be
terminal decision 4. Clearly, the S(k,S)'s are dis- chosen long enough so that detection and identification
joint sets with respect to both k and 3. The expres- of failures are possible, but short enough so that
sions e(iT) and P((ir),S) are the conditional ex- implementation is feasible (l].W
peced delay in decision (i.e. stopping sampling and The sliding window rule d ) divides the sample
making a failure identification) and the conditional space of the sliding window of residuals (r(k- +l),
pro*abilicy of eventually declaring 6, given a type i ....,r(k)}, or equivalently, the space of vectors of
failure has occurred at time T and no false alarm has posterior probabilities, likelihood ratios, or log
been signalled before this time respectively, likelihood ratios (L) of the sliding window of failure
?(Ci,r),5) is the generalized cross-detection proba- hypotheses into disjoint time-independent sequential
b il t:. Finally, the sequential Bayes risk Us can be decision regions (S, S .. . Because the residuals

rtcten as are assumed 0o be Gaussian va.iables, it is simpler to

m work with L (which is related to L by a constant):

_)-+(.-F()[c()(i,:)+" ~ ~ F - - L (k) (L;(k) ... L:!k}

-quation (i) indicates that thu sequential Bayes LL(k)=[L k;Lr), (k: -,)I"

si eighte1 :.':tiar'. a the condional false
r .... ex;-z"ed d.-to dccisi.)fmd r -- s 1 (2)

:--;;- !e ection pro-ab~il ie-s, and the opt i.21 sequen- s g
: re *,*) in[i. : ;ue :oI oitb on. From The:i, the slidin. windo'; rul e .tes: At each ti:e

"cae ;oni, tne z,,t ,inct;ons i ind z) and k 0- (-2 Z2 th wu-
. : i:rlm.1':'. (A "Je for V, %.:/b'Lnq.  ' '- . or

A. " " , . - -
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L kcSO;, and we will proceed to take one more obser- theses of different fal-ure types.
vation of the residual. The Bayes design problen is The risk for using (4) is
to determine a set of regions. 'S, S. SN} that min- x . !'

irnizes the sequential risk 01 ,(US.)). This represents U (f)-L ; (i, r)Z kF ~ ,S0 (k-)Oi

a functional minimization problem for which a solution "M
is generally very difficult to determine. A simpler + Z P(i,M) 1 7 [c(i)(k-)+L(i,j)]
alternative to this problem is to constrain the deci- i-l - k-max[W,t] j-1
sion regions to take on special shapes, [Si(f)), that
are parameterized by a fixed dimensional vector, f,
of design variables. Then the resulting design pro- - J
blem involves the determination of a set of parameter wherevalues f* that minimizes the risk UW(f). We will
focus our attention on a special set of parametrized Ok-Lvlkc(WE
sequential decision regions , because they are simple 0o"' -~ ~~ .. - ( ) z O

and they serve well to illustrate that the Bayes

formulation can be exploited, in a systematic fashion, The probabilities required for calculating the risk
to obtain simple suboptimal rules that are capable of are given by the recursion:
delivering good performance. These decision regions
are: p(L.- (k+l)IS O (k),i,t)
S(J,Z)-{L(k) :/(k;jj)f(ji) Ip(L,,l (k)ISo0(k-l),i_,-)d 'w-1(k)]

-

: , S

(iT)#(j,{)}." (3) p O(k)IS0-l,,) W l(k) k>W (5)
(3a 0' -1 0 -

S(O,-)-{L(k) : (k;i,T)<f(i,7), PrfblW (k)cSi, So0(k-l)1i,T} - Pr(So0(k-l)li,T)"

i-i (3, . -11 (Jb) ! fp(L_ 1 (k)!S 0 (k-l),i,7)dL 1 (k), J-0,i .... M (6)

where S(J,r) is the stop-to-declare (j,k-t) region and
S(O,-) is the continue region (see Fig. 1). Generally with
the e's mav be regarded as design parameters, but
here, c(j,t) is simply taken to be the standard de- Pr{L (WtW)'S.ji,T) - f p(L_,,(W)il,r)d Ll(W) (7)
viacion of L(k,j,t). - J Sj

To evaluate U4 (f), we need to determine the set For M small, numerical integration of (5)-(7) becomes
of probabilities, fPr(L(k)cS(j, ),L(k-l)cS(O,-) ..... manageable.

L(W)cS(O.-)!i,r). k>W, J-O,l,....M, t-O,...,W-l), Unfortunately, the transition density,
which, indeed, is the goal of many research efforts in p(L.Wl(k+I)LIW_l(k),So(k-l),i,r). required in (5) is
the so-called level-crossing problem [51. Unfortu- difficult to calculate, because Lwl(k) is not a
nately, useful results (bounds and approximations of Karkov process. In order to facilitate computation
such probabilities) are only available for the scalar of the probabilities, we need to approximate the
case [6].f7],[8]. As it stands, each of the proba- transition density. In approximating the required
bilities is an integral of a kNW-dimensional Gaussian transition density for L:_(k) we are, in fact, ap-
density over the compound region S(O,-)x... xS(O,-) proxinating the behavior of LWI. A simple approx-
xS(j,t), which, for large kna, becomes extremely un- imacion is a Gauss-Markov process t(k) that is defined
wieldy and difficult to evaluate. . by

The MW-dimensional vector of decision statistics
L(k) corresponds to the MW failure hypotheses, and L(k+l) - AI(k) + Z(k+l)
they provide the information necessary for the simul-
taneous identification of both failure type and fail- E[&(k)&'(t)) * BB'u0 (k-t)
ure time. In most applications, such as the aircraft
sensor FDi problem (31 and the detection of freeway where A and B are MxM constant matrices and t is a
traffic Incidents (41, where the failure time need not white Gaussian sequence with covariance equal to the
be exolicitly identified, the f Llure time resolution (Mx.M) matrix BB'. The reason for choosing this model
power provided by the full window of decision statis- is twofold. Firstly, just as Lt..l(k), 1(k) is
tics is not needed. Instead, decision rules that Gaussian. Secondly, L(k) is Markov so that its tran-
eiploy a few components of L(k) may be used. The sition density can b# readily determined. In order to
decision rule of this type considered here consists have t(k) behave like L _I(k), we set the matrices A
of seouential decision regions that are similar to and B and the mean of .such that
(3) but are only defined in terms of M components of
LI. i(k)'"E. iL (B)

S -. l.. k) : (k;J,W-l),fj E0, (k) k' (k)'.=E,_ L 10 L k i _ (k)) (9)
-I ,'- ) L k; , -)-j > -l * l [ ( i - f ] o [k

(j L' " ( )j >E- i- Lkk )0(k) L (k+l) (10)

That is, we have matche2 :1e 7arginal density and the
LO; lk (k,j,',--l),f j  j-1,,H 'm'4b) one-ste p cross-ccvarianze o- L(k) to those of /_L -100.

it car n (;howO that ) Jn ly specify
t.nere .i is the top-o-declare-f.-.ure-j region and.o is -C'e continuje r vio.n. Tt should be a oted that A 4. 0 O

the use of (4) is eff-ctive if cross-correlat ions of .. -
s!ztazt.-res i-ong hv,.,c h ses of the Sa-C failure tvpe BB' ," O -
it i ;f-._ren t - s ,r :=iir h n vosc .riort hy'po-FA >
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Zi, k+) A E wI(k) I using r(k) we have to aug-ent the signatures as:[L.Ll Wg ),...,g(v-)', i-l....M. By a proper choice

-re of v, the rank of 00 can be increase! to M and 3 will
W-1 be invertible.%={ _()_(k)} -I V GtV'G
t.O Non-wLndov Secuential DecLision Rules

= '+ 1 Here we will describe another simple decision
I V1 0 ' G€  rule that has the same decision regions as the simpli-

t-0 fied sliding window rule (4), but the vector (z) of M
decision statistics is obtained differently as follows:

Z C C -r(k+l) (13)ji, _=(k)l c-0 0 where A is a constant stable Mx. matrix, and i is a
W-1 -Lxm constant matrix of rank t. Unlike the Xarkov
| C GV G' k0 k-W+l-r>O model 4(k) that approximates L,.1(k), z(k) is a
0 k0  realizable Markov process driven by the residual. The

advantages of using z as the decision statistic are:
G. - 1g1(r) ..... [(t)]' 1) less storage is required, because residual samples

need not be stored as necessary in the sliding window
Moreover, the matrix A is stable, i.e. the magnitudes scheme, and 2) since z is MYakov, the required proba-
of all of the eigenvalues of A are less than unity, bility integrals are of the form (11) and (12) so that
ad 3 is invertible if Gor .4_1 is of rank M. Be- the same integration algorithm can be directly applied
cause r is an artificial process (i.e. is not a to evaluate such integrals. (It is possible to use a
direct function of the residuals r(k)) Z(k) can never higher order z, but the added complexity will negate
be implemented for use in (4). the advantages.)

.We may choose other Markov approximations of In order to form the statistics z, we need to
cU (k) that match -the n-step cross-covariance (l<n<W) choose the matrices A and B. .'hen the failure signa-

nszead of catching the one-step cross-covariance as Cures under consideration are constant biases, B can
in (10). The suitability of a criterion for choosing simply be set to equal CO, and A can be chosen to be
the =atrices A and B, such as (9) and (10), depends nI, where 0<a<l. Then, the term 3r in (13) resembles
directly on the failure signatures under consideration g'V-lr of (2), and it- provides the correlaticn of the
ani may be examined as an issue separate from the residual with the signatures. The time constant
decision rule design problem. Also, a higher order (1/1-a) of z characterizes the memory span of z just
'-rkov process may be used to approximate LW_l. How- as W characterizes that of the sliding window rules.
aver, the increase in the computational complexity More generally, if we consider failure signatures

=a. negate the benefits of the approximation. that are not constant biases, the choice of A may
Now we can approximate the required probabilities still be handled in the same way as in the constant-

in the risk calculation as bias case, but the selection of a B matrix is =ore
involved. With some insights into the nature of the

?r *_k)aS.,S0(k-l)Ii,t1}P lZ(k)eS.,S signatures, a reasonable choice of
r'ju- ( 0.(k-l)(a,r1 sgatrs 3 can often bemade. To illustrate how this may be accomplished, we

j-0,I,...,M k>W will consider an example with two failure modes and an
m-dimensional residual vector. Let

and
gl(k-x) - 8 1

Srl(k)tS.j SO(k-l)Ji,rJ}
g2(k-') = 32(k-T+l)

-?rS 0(k-l)li,r} r pdZ(k)IS 0 (k-1),i,T)dZ(k) (11)
Sj That is, g, is a constant bias, and g2 is a ramp. If

where we have applied the same decision rule to Z(k) 8 and B, are not multiples of each ocher a simple
as L,_(k). Therefore, Sj and SO(k-l) denote the coice oE B is available:
aecision regions and the event or continued sampling

uo o rime k for both LW_l and L. Assuming B-1

exists, we have

?wLk+W)S(k),i,t) , [f p(L(k)[ IS(k-1),i,r)d1(k)J_
-1

S0

x f p((k+l) ( (i(k+l)-At(k)fli,r) If 1 la S and 8,,aB, where a1 and a, are scalar con-
SO stn s,-the above 2hoice of B has raiik one and is not

:Sk) ,i,r)dZ,(), k>W (12) useful for identifying either signature. Suppose we
batch process every two residual -samples together, i.e.

wlere 3(i(k)',T) is the Caissian density of &(k) we use the residual sequenc r(k) (- (
.:ner the -ailure (i,:). Now the integrals (11) and k-1.2 ..... Then we can set 3 to be

represent ore tractable numerical problems.
in the event thic B is not invertible, the tran-

s :ic7 ens!c: is .ener.ce and (12) is very difficult
a-'" [ d. Ver7 often this problem can be circum- =

* - y batch pro,:es;sLng the residuals. Th.vt.is, we
*!" id.Jer th nodfied residual ieluence: r(k) -

.. . . -...... ....r'(vk)1' for so-me batch Thu', Cie fir: . , .: ro- J :: -n-
*L1, .,. .. 3s te .jrw t ine Lid~.. t t1 -bias 4n a .: r 1. . Y~ .. ~. .
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(and this B has rank two). The use of the modified P tCJi)'P (jli) j-0,!,2, t' (17)
resudual r(k) in this case causes no adverse effect,
since it only lengthens slightly the interval between uhen the signature of lhe failure model is a constant
times when terminal decisions nay be made. A big in- (including the no-fail case), the reasoning behindcrease in such intervals i.e., the batch processing (14) holds, and -we can see chat ?t(jli) will reach a

of r(k),...,r(k+v) simultaneously for large v, may steady state value as t (the elaspsed time) increases.
however, be undesirable. For problems where the Then,*(17) is a valid approxination for a large .
signatures vary drastically as a function of the For the case where failure signatures are not constants,
elapsed time, or the distinguishability among failures the probability of continuing after i time steps (for
depends essentially on these variations, the effec- sufficiently large L) may be arbitrarily small. The
tiveness of using z diminishes. In such cases the error introduced by (17) in the risk (and performance
sliding window decision rule should provide better probability) calculation is, consequently, small.
performance because of its inherent nature to look Substituting (17) in (16), we get
for a full window's worth of signature. 2 2

U (f)=PFL +(-PF)Z O(i)[c(i)ti+ Z L(i,j)P(i,j)] (18)
ProbabilitX Calculation S FF F. .

An algorithm based on 1-dimensional Gaussian
quadrature formulas [9) has been developed to compute where
the probability integrals of (11) and (12) for the
case M-2. (It can be extended to higher dimension 2 6 1cae t=O t.bjt 1 +bo(Ai a + 1-P (O~i) (19)
with an increase in computation.) The details of this ti E E t0

quadrature algorithm is described in [l]. Its accu-
racy has been assessed via comparison with Monte Carlo P, (j i)

simulations (see the numerical example). With this P(ij)- Z b (ti)+b (Al) " (20)

algorithm we can evaluate the performance probabili-
ties and risks associated with the suboptimal decision P is the unconditional false alarm probability, i.e.
rules described above. the probability of one false alarm over all time,

is the conditional expected delay to decision, given
Risk Calculation that a type i failure has occurred, and P(i,j) is the

in the absence of a failure, the conditional conditional probability of declaring a type J failure,
density has been observed to essentially reach a given that failure i has occurred. From the assumption
steady state at some finite time T>W.

1  Then, for k>T that Pr(So(T)IO,-}J=1 and the steady condition (14), it
we have can be shown that the-mean time between false alarms is

simply -)-l. Now all the probabilities in (18)-
Prii(k)cS.IS (k-l),O-} . b (14) (20) can be computed by using the quadrature algorithm.

0 bNote that the risk expression (18) consists only of

Pr(Z(k)eS.,i(k-l)rS0 .  (r)tSoIS(t-l),i,t} - finite sums and it can be evaluated with a reasonable
i) amount of computational effort. With such an approx-

bi(k-T i) k>-rT (15) imation of the sequential risk, we will be able to

consider the problem of determining the decision
That is, once steady state is reached, only the rela- regions (the thresholds f) that minimize the risk.
tive time (elapsed time) is important. Generally, It should be noted that we could consider choosing
fialures occur infrequently, and decision rule with a set of thresholds that minimize a weighted combina-
low false alarm probabilities are employed. Thus, it tion of certain detection probabilities (P(i,j)), the
is reasonalbe to assume 1) a<cI ((l-P) T r 1), and 2) expected detection delay (t.), and the mean time be-
Pr{So(T)fO,-} - 1. The sequential risk associated tween false alarms ((1 - b S-l). Although such an
with (4) for M-2 can be approximated hy objective function will not result in a Bayesian de-

sign in general, it is a valid design criterion that
W 2 2 may be useful for some application.U s (f=?F L F+(I-P F E o(i)E E [c(i)t+L(i,j)]b (tli)]

i.1 j-l t-0 (16) Risk Minimization
where The risk minimization problem has two features

that deserve special attention. Firstly, the sequen-

-o)-la) tail risk is not a simple function of the threshold f,
F 1-5(1-0) and the derivative with respect to f is not readily

available. Secondly, calculating the risk is a costly

Next, we seek to replace the infinite sum over t task. Therefore, the minimum-seeking procedure to be
in (16) by the finite sum up to t-A plus a term ap- used must require few function (risk) evaluations, and
proximating the remainder of the infinite sum. Sup- it must not require derivatives. The sequence-of-
pose we have been sampling for a steps since the fail- quadratic-programs (SQP) algorithm studied by Winfield
ure occurred. Define: [10] has been chosen to solve this problem, because it

does not need any deriva:fve information and it appears
P c ;)-Pr "(t)ES Is 0(t-l),iO} j-O,l,2 to require fewer functi'n eva'.aitions than other well-

known algorithms [10]. Further-.ore, the SOP is simple,
If we stop computing the probabilities after Awe and it has quadratic ccnvergence. Very briefly, the

may approximate algorithm consists of the following. At each iteration,
a quadratic surface is fitted to the risk function
ocalVhen he qadratic nodel is minimized over a

constraint region (rience the name SQ?). The risk
1Unfortunately, we have not been able to prove function is evaluated At t:iis nininum and is u ed in

the surface fitting of "he next iteration. The de-
suc: convergence behavior using elumentary techniques. tails of the apptication of SQP co risk minivization
More ad.anced function-theoretic methods may be neces-
sa ry.
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is re.orted in (1.

4,. NU'lZRCAL E'e-VILE L(1,2)=L(2,1)-lO L(l,l)-L(2,2)=O

Here, we will discuss an application of the sub- ci~c2 1i
optimal rule design =ethodology described above to a -

edumerical example. We will consider the detection u(i,r).5o(l-o) l,2
and identification of two possible failure modes
(without identifying the failure times). We assume p.0002 T-8 4-8
:hat the residual is a 2-dimensional vector, and the
vector failure signaturzs, gl(t), I-1,2, as functions Table 3. Cost Functions and Prior Probability.
of the elapsed time t are shown in Table 1. The
signature of the first failure =ode is simply a con- The results of SW, MA. and Q2O for the thresholds

scant vector. The first component of g2 (t) is a con- [8.85, 12.05] are shown in Figs. 2-6 (see (15) for the
scant, while the second component is a ramp. We have definition of notations). The quadrature results Q20

chosen to examine these two types of signature be- are very close to 11A, indica:ing good accuracy of the
havior (constant bias and ramp) because they are sim- quadrature algorithm. In comparing SW -ith MLA, it is
?le and describe a large variety of failure signatures evident that the Uarkov apPro:xiarion (XA) slightly
that are commonly seen in practice. For simplicity, under-estimates the false alarm- r.Ace of the sliding
we have chosen V, the covariance of r, to be the window rule (SW). However, the response of the Markov

identity matrix. approximation to failures is very close to that of the
;e will design both a simplified sliding window sliding window rule. In the oresent example, L.._ is

nule (that uses L _l) and a rule using the Markov a 7-th order process, while i:s aproximation P is
sracistfc a. The para-eters associated with the only of first order. In view of this fact, we can

, ,Z. and z are show-n in Table 2, and the cost conclude that Z provides a very reasonable and useful

.i-Etions and the prior probabilities are shown in approximation of LW_.
Table 3. To facilitate discussions, we will intro- The successive choices of thresholds by SQP for

duce :he following terminology. We will refer to a the sliding window rule are plotted in Fig. 7. Note
Monte Carlo simulation of the sliding window rule by -that we have not carried the SQ? algorithm far enough
S', a simulation of the rule using the Markov statis- so that the successive choias of thresholds are, say,
:4c z as Markoy implementation (MI), and a simulation within .001 of each other. This is because towards
o che nonimplementable decision process using the later iterations the perfo:=an e indices become rela-
approximation Z as Markov approximation (MA). (All rively insensitive to small changes of the f's. This

simulations are based on 10,000 trajectones.) The together with the fact that we are only computing an
notation Q20 refers to the results of applying the approximate Bayes risk means Chat fine scale optimi-
quadrature algorithm to the approximation of 1Wl by zacion is not worthwhile. Therefore, with the approx-

imate risk, the SQP is most efficiently used to locate
the zone where the minimum lies. That is, the SQP

1 [ 5 1algorithm is to be terminated -when it is evident that
L(- it has converged into a reasonably smallregion. Then

5 25 + .25t we may choose the thresholds that give the smallest
risk as the approximate solution of the minimizacion.

1 ol In the event that thresholds that yield the small-
V. est risk do not provide the desired detection perfor-

L0 1J mance, the design parameters, L, c, i, and W may be
adjusted and the SQP may be repeated to get a new de-

Table 1. Failure signatures. sign. A practical alternative method is to make use
of the list of performance indices (e.g. P(i,j)) that

are generated in the risk calculation, and choose a
W 3 pair of thresholds that yields the desired performance.

826 .058 The performance of the decision rules using L-_1
A .826 and z as determined by SQP are shown in Figs. 8-12.

1.116 .837J (The thresholds for 
1W-.l are [3.35, 12.05] and those

for z are (6.29, 11.69].) We note that 4t has a
10 3.5 higher false alarm rate than SW. The speed of detec-

0 810 148.tion for the two rules is si=ilar. While MI has a
slightly higher type-l correct detection probability
than SW, SW has a consistently higher b2 (tJ2) (type-Z

2.32 2.011 correct detection probability) than MI. By raising
12.01 4.58 the thresholds of the rule using z appropriately, we

can decrease the false alarm, rate of MI down to that

875 0 1 - r s of SW with an increase in detection. delay and slightlyF .g - I " improved correct detection probability for the type-2A 0 .875 5 failure (with ramp signature). Thus, the sliding
window rule is slighc: sup~rior to the rule using z

5 r.31 6.41 1.25 1.501 in the sense that when both are designod to yield a
z 50 42J comparable false alarm ra:e, the latter will have

L6- LS.11.5 2 lonz~r detection delays and si:;.tl: lower correct
dtetction probability (fcr :e-2 failure). In view

T.L-. 2. ?ari-.oters for L , Z and z. of the fact that a decii'zn : s usin; z is much
sinimler :o ivnlenuint, 4t i5 *'Orth ' of boin, ccns;idcrud

as an olt rnitive to th'. .Kn ov o r .j
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!n su'.mary, the result of applying our decision
rule design method to the present example is very
good. The quadrature algorithm has been shown to be
useful, and the Markov approximation of LW_ 1 by Z is
a valid one. The SQP algorithm has demor4trated its
simplicity and usefulness through the numerical exam- (k;,')
ple. Finally, the Markov decision statistic z has slope (
been shown to be a worthy alternative to the sliding e(Stl)

window statistic Lw_.. s(ji)l

5. CONCLUSION

A methodology based on the Bayesian approach is
developed for designing suboptimal sequential deci- S(i,f)
sion rules. This methodology is applied to a numer- S(o,-)
ical example, and the results indicate that it is
a useful design approach.

J f~i, ) (ki,?)
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